

DESIGN AND ANALYSIS OF ALGORITHMS

OBJECTIVES:

Upon completion of this course, students will be able to do the following:

• Analyze the asymptotic performance of algorithms.

• Write rigorous correctness proofs for algorithms.

• Demonstrate a familiarity with major algorithms and data structures.

• Apply important algorithmic design paradigms and methods of analysis.

• Synthesize efficient algorithms in common engineering design situations

UNIT-I:

Introduction: What is an Algorithm, Algorithm Specification, Pseudocode Conventions

Recursive Algorithm, Performance Analysis, Space Complexity, Time Complexity, Amortized

Complexity, Amortized Complexity, Asymptotic Notation, Practical Complexities, Performance

Measurement.

UNIT-II:

Dived and Conquer: General Method, Defective Chessboard, Binary Search, Finding the

Maximum and Minimum, Merge Sort, Quick Sort, Performance Measurement, Randomized

Sorting Algorithms.

UNIT-III:

The Greedy Method: The General Method, Knapsack Problem, Job Sequencing with Deadlines,

Minimum-cost Spanning Trees, Prim’s Algorithm, Kruskal’s Algorithms, An Optimal

Randomized Algorithm, Optimal Merge Patterns, Single Source Shortest Paths.

UNIT-IV:

Dynamic Programming: All - Pairs Shortest Paths, Single – Source Shortest paths General

Weights, String Edition, 0/1 Knapsack, Reliability Design,

UNIT-V:

Backtracking: The General Method, The 8-Queens Problem, Sum of Subsets, Graph Coloring ,

Hamiltonian Cycles.

UNIT-VI:

Branch and Bound: The Method, Least cost (LC) Search, The 15-Puzzle: an Example, Control

Abstraction for LC-Search, Bounding, FIFO Branch-and-Bound, LC Branch and Bound, 0/1

Knapsack Problem, LC Branch-and Bound Solution, FIFO Branch-and-Bound Solution,

Traveling Salesperson.

OUTCOMES:

Students who complete the course will have demonstrated the ability to do the following:

III Year – II Semester
L T P C

4 0 0 3

• Argue the correctness of algorithms using inductive proofs and invariants.

• Analyze worst-case running times of algorithms using asymptotic analysis.

• Describe the divide-and-conquer paradigm and explain when an algorithmic design

situation calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-

conquer algorithms. Derive and solve recurrences describing the performance of divide-

and-conquer algorithms.

• Describe the dynamic-programming paradigm and explain when an algorithmic design

situation calls for it. Recite algorithms that employ this paradigm. Synthesize dynamic-

programming algorithms, and analyze them.

• Describe the greedy paradigm and explain when an algorithmic design situation calls for

it. Recite algorithms that employ this paradigm. Synthesize greedy algorithms, and

analyze them.

TEXT BOOKS:

1. Fundamentals of computer algorithms E. Horowitz S. Sahni, University Press
2. Introduction to AlgorithmsThomas H. Cormen, PHI Learning

REFERENCE BOOKS
1. The Design and Analysis of Computer Algorithms, Alfred V. Aho, John E. Hopcroft, Jeffrey D.

Ullman

2. Algorithm Design, Jon Kleinberg, Pearson.

